Towards Learning with Brain Efficiency
June 28, 2019, 12:00 pm to 1:00 pm
Modern computing systems are plagued with significant issues in efficiently performing learning tasks.
In this talk, I will present a new brain-inspired computing architecture. It supports a wide range of learning tasks while offering higher system efficiency than the other existing platforms. I will first focus on HyperDimensional (HD) computing, an alternative method of computation which exploits key principles of brain functionality: (i) robustness to noise/error and (ii) intertwined memory and logic. To this end, we design a new learning algorithm resilient to hardware failure. We then build the architecture exploiting emerging technologies to enable processing in memory. I will also show how we use the new architecture to accelerate other brain-like computations such as deep learning and other big data processing.